Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(3): e11123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444723

ABSTRACT

Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.

2.
Int J Biol Macromol ; 264(Pt 1): 130409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417750

ABSTRACT

Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.


Subject(s)
Epoxy Resins , Flame Retardants , Calcium Gluconate , Biomass , Diffusion , Polyphosphates
3.
Angew Chem Int Ed Engl ; 63(1): e202315238, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37953400

ABSTRACT

Ambient electrochemical ammonia (NH3 ) synthesis is one promising alternative to the energy-intensive Haber-Bosch route. However, the industrial requirement for the electrochemical NH3 production with amperes current densities or gram-level NH3 yield remains a grand challenge. Herein, we report the high-rate NH3 production via NO2 - reduction using the Cu activated Co electrode in a bipolar membrane (BPM) assemble electrolyser, wherein BPM maintains the ion balance and the liquid level of electrolyte. Benefited from the abundant Co sites and optimal structure, the target modified Co foam electrode delivers a current density of 2.64 A cm-2 with the Faradaic efficiency of 96.45 % and the high NH3 yield rate of 279.44 mg h-1 cm-2 in H-type cell using alkaline electrolyte. Combined with in situ experiments and theoretical calculations, we found that Cu optimizes the adsorption behavior of NO2 - and facilitates the hydrogenation steps on Co sites toward a rapid NO2 - reduction process. Importantly, this activated Co electrode affords a large NH3 production up to 4.11 g h-1 in a homemade reactor, highlighting its large-scale practical feasibility.

4.
Adv Mater ; 35(41): e2303455, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37363875

ABSTRACT

Ammonia (NH3 ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH3 production, which combines two steps of plasma-air-to-NOx - and electrochemical NOx - reduction reaction (eNOx RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo2 O4 /Ni can simultaneously promote plasma-air-to-NOx - and eNOx RR processes. The easy adsorption and activation of O2 by CuCo2 O4 /Ni greatly improve the NOx - production rate at the first step. Further, CuCo2 O4 /Ni can also resolve the overbonding of the key intermediate of * NO, and thus reduce the energy barrier of the second step of eNOx RR. Finally, the "green" NH3 production achieves excellent FENH3 (96.8%) and record-high NH3 yield rate of 145.8 mg h-1  cm-2 with large partial current density (1384.7 mA cm-2 ). Moreover, an enlarged self-made H-type electrolyzer improves the NH3 yield to 3.6 g h-1 , and the obtained NH3 is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH3 .

5.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1075-1085, 2022 09.
Article in English | MEDLINE | ID: mdl-35687145

ABSTRACT

Chronic glomerulonephritis (CGN) is a disease occurred in glomeruli. The mechanism of CGN is regarded to be involved in a range of inflammatory responses. MicroRNA-339-5p (miR-339-5p) has been reported to be involved in inflammatory responses in many diseases. However, the role of miR-339-5p in CGN remains unclear. The purpose of this study was to investigate the role of miR-339-5p in lipopolysaccharide (LPS)-induced nephritis injury in vitro. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot (WB) were used to detect the expression of miR-339-5p and Syk/Ras/c-Fos pathway. Double luciferase was performed to identify targeted binding of miR-339-5p to Syk. Cell counting kit-8 (CCK-8) and flow cytometry were used to observe cell viability and cell cycle. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines IL-1ß, IL-10, IL-6, and TNF-α. Lipopolysaccharide (LPS) could increase HBZY-1 (rat mesangial cells) cell viability, decrease the G2 phase, and promote cell proliferation and accelerate inflammatory cytokine. However, overexpression of miR-339-5p could inhibit LPS-induced HBZY-1 cell viability, decrease the expression of Syk/Ras/c-Fos signaling pathway, downregulate the expression level of inflammatory cytokines, increase the G2 phase, and inhibit cell proliferation. miR-339-5p could inhibit the proliferation and inflammation of the rat mesangial cells through regulating Syk/Ras/c-Fos signaling pathway.


Subject(s)
Lipopolysaccharides , MicroRNAs/genetics , Animals , Apoptosis , Cytokines , Mesangial Cells , Rats , Signal Transduction
6.
Natl Sci Rev ; 8(2): nwaa150, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34691570

ABSTRACT

The dendrite growth of Li anodes severely degrades the performance of lithium-oxygen (Li-O2) batteries. Recently, hybrid solid electrolyte (HSE) has been regarded as one of the most promising routes to tackle this problem. However, before this is realized, the HSE needs to simultaneously satisfy contradictory requirements of high modulus and even, flexible contact with Li anode, while ensuring uniform Li+ distribution. To tackle this complex dilemma, here, an HSE with rigid Li1.5Al0.5Ge1.5(PO4)3 (LAGP) core@ultrathin flexible poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) shell interface has been developed. The introduced large amount of nanometer-sized LAGP cores can not only act as structural enhancer to achieve high Young's modulus but can also construct Li+ diffusion network to homogenize Li+ distribution. The ultrathin flexible PVDF-HFP shell provides soft and stable contact between the rigid core and Li metal without affecting the Li+ distribution, meanwhile suppressing the reduction of LAGP induced by direct contact with Li metal. Thanks to these advantages, this ingenious HSE with ultra-high Young's modulus of 25 GPa endows dendrite-free Li deposition even at a deposition capacity of 23.6 mAh. Moreover, with the successful inhibition of Li dendrites, the HSE-based quasi-solid-state Li-O2 battery delivers a long cycling stability of 146 cycles, which is more than three times that of gel polymer electrolyte-based Li-O2 battery. This new insight may serve as a starting point for further designing of HSE in Li-O2 batteries, and can also be extended to various battery systems such as sodium-oxygen batteries.

7.
Angew Chem Int Ed Engl ; 58(28): 9464-9469, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31090132

ABSTRACT

The electrochemical N2 fixation, which is far from practical application in aqueous solution under ambient conditions, is extremely challenging and requires a rational design of electrocatalytic centers. We observed that bismuth (Bi) might be a promising candidate for this task because of its weak binding with H adatoms, which increases the selectivity and production rate. Furthermore, we successfully synthesized defect-rich Bi nanoplates as an efficient noble-metal-free N2 reduction electrocatalyst via a low-temperature plasma bombardment approach. When exclusively using 1 H NMR measurements with N2 gas as a quantitative testing method, the defect-rich Bi(110) nanoplates achieved a 15 NH3 production rate of 5.453 µg mgBi -1 h-1 and a Faradaic efficiency of 11.68 % at -0.6 V vs. RHE in aqueous solution at ambient conditions.

8.
Mitochondrial DNA B Resour ; 4(2): 2916-2917, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-33365790

ABSTRACT

Ruppia is widely distributed in marine and inland saline habitats in temperate and tropical regions. In this study, the complete chloroplast genome sequence of R. sinensis was successfully obtained using Illumina sequencing. The full length of the chloroplast genome length was 158,897 bp with a typical quadripartite structure: one large single copy (LSC) region (88,952 bp), one small single copy (SSC) region (19,047 bp), and a pair of inverted repeats (IR) (25,449 bp each). The GC content of this genome was 35.9%. The whole genome contained 136 genes, including 88 protein-coding genes, 40 tRNA genes, and eight rRNA genes. Phylogenetic analysis indicated that R. sinensis formed a distinct clade, being separated from Zostera marina and Potamogeton perfoliatus.

9.
Small ; 14(32): e1703843, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30003667

ABSTRACT

Large-scale application of renewable energy and rapid development of electric vehicles have brought unprecedented demand for advanced energy-storage/conversion technologies and equipment. Rechargeable zinc (Zn)-air batteries represent one of the most promising candidates because of their high energy density, safety, environmental friendliness, and low cost. The air electrode plays a key role in managing the many complex physical and chemical processes occurring on it to achieve high performance of Zn-air batteries. Herein, recent advances of air electrodes from bifunctional catalysts to architectures are summarized, and their advantages and disadvantages are discussed to underline the importance of progress in the evolution of bifunctional air electrodes. Finally, some challenges and the direction of future research are provided for the optimized design of bifunctional air electrodes to achieve high performance of rechargeable Zn-air batteries.

10.
Adv Mater ; 29(33)2017 Sep.
Article in English | MEDLINE | ID: mdl-28681965

ABSTRACT

Ammonia synthesis is one of the most kinetically complex and energetically challenging chemical processes in industry and has used the Harber-Bosch catalyst for over a century, which is processed under both harsh pressure (150-350 atm) and hightemperature (623-823 K), wherein the energy and capital intensive Harber-Bosch process has a huge energy cost accounting for about 1%-3% of human's energy consumption. Therefore, there has been a rough and vigorous exploration to find an environmentally benign alternative process. As the amorphous material is in a metastable state and has many "dangling bonds", it is more active than the crystallized one. In this paper, CeOx -induced amorphization of Au nanoparticles anchored on reduced graphite oxide (a-Au/CeOx -RGO) has been achieved by a facile coreduction method under ambient atmosphere. As a proof-of-concept experiment, a-Au/CeOx -RGO hybrid catalyst containing the low noble metal (Au loading is 1.31 wt%) achieves a high Faradaic efficiency (10.10%) and ammonia yield (8.3 µg h-1 mg-1cat. ) at -0.2 V versus RHE, which is significantly higher than that of the crystalline counterpart (c-Au/RGO), and even comparable to the yields and efficiencies under harsh temperatures and/or pressures.

11.
Adv Mater ; 29(17)2017 May.
Article in English | MEDLINE | ID: mdl-28240391

ABSTRACT

As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3 : 21.4 µg h-1 mg-1cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.

12.
Adv Mater ; 29(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27859722

ABSTRACT

Using tetrahexahedral gold nanorods as a heterogeneous electrocatalyst, an electrocatalytic N2 reduction reaction is shown to be possible at room temperature and atmospheric pressure, with a high Faradic efficiency up to 4.02% at -0.2 V vs reversible hydrogen electrode (1.648 µg h-1 cm-2 and 0.102 µg h-1 cm-2 for NH3 and N2 H4 ·H2 O, respectively).

15.
PLoS One ; 7(6): e39146, 2012.
Article in English | MEDLINE | ID: mdl-22723951

ABSTRACT

Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.


Subject(s)
Cell Nucleus/genetics , Chloroplasts/genetics , Ecosystem , Fagaceae/genetics , Genetic Variation , Trees/genetics , Alleles , DNA, Plant , Gene Flow , Haplotypes , Islands , Microsatellite Repeats , Pollen/genetics , Seeds/genetics
16.
PLoS One ; 6(6): e21302, 2011.
Article in English | MEDLINE | ID: mdl-21701584

ABSTRACT

BACKGROUND: The distribution of genetic diversity among plant populations growing along elevational gradients can be affected by neutral as well as selective processes. Molecular markers used to study these patterns usually target neutral processes only, but may also be affected by selection. In this study, the effects of elevation and successional stage on genetic diversity of a dominant tree species were investigated controlling for neutrality of the microsatellite loci used. METHODOLOGY/PRINCIPAL FINDINGS: Diversity and differentiation among 24 populations of Castanopsis eyrei from different elevations (251-920 m) and successional stages were analysed by eight microsatellite loci. We found that one of the loci (Ccu97H18) strongly deviated from a neutral model of differentiation among populations due to either divergent selection or hitchhiking with an unknown selected locus. The analysis showed that C. eyrei populations had a high level of genetic diversity within populations (A(R) = 7.6, H(E) = 0.82). Genetic variation increased with elevation for both the putatively selected locus Ccu97H18 and the neutral loci. At locus Ccu97H18 one allele was dominant at low elevations, which was replaced at higher elevations by an increasing number of other alleles. The level of genetic differentiation at neutral loci was similar to that of other Fagaceae species (F(ST) = 0.032,  = 0.15). Population differentiation followed a model of isolation by distance but additionally, strongly significant isolation by elevation was found, both for neutral loci and the putatively selected locus. CONCLUSIONS/SIGNIFICANCE: The results indicate higher gene flow among similar elevational levels than across different elevational levels and suggest a selective influence of elevation on the distribution of genetic diversity in C. eyrei. The study underlines the importance to check the selective neutrality of marker loci in analyses of population structure.


Subject(s)
Fagaceae/genetics , Trees , Fagaceae/classification , Gene Flow/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics
17.
Zhonghua Shao Shang Za Zhi ; 26(3): 199-201, 2010 Jun.
Article in Chinese | MEDLINE | ID: mdl-20723421

ABSTRACT

OBJECTIVE: To study the risk factors of infection of extended-spectrum beta-lactamases (ESBL)-producing strains and drug resistance of Enterobacteriaceae that infected burn patients. METHODS: A retrospective study was performed on clinical information of 92 patients with Enterobacteriaceae infection in our burn unit from January 2001 to December 2008. The distribution and drug resistance of Enterobacteriaceae, and the detection rate, drug resistance of ESBL-producing strains, and its risk factors of nosocomial infection were analyzed. Data were processed with Chi-square test. RESULTS: One hundred and nine strains of Enterobacteriaceae were isolated, with 38 (34.9%) strains of Enterobacter cloacae, 25 (22.9%) strains of Escherichia coli, 22 (20.2%) strains of Klebsiella pneumoniae, 13 (11.9%) strains of Proteus mirabilis, and 11 (10.1%) other strains of Enterobacteriaceae. Enterobacteriaceae were moderately or highly resistant to antibiotics except imipenem, resistance rate of which was less than 8.0%. ESBL-producing strains accounted for 44.0% in Escherichia coli, and 77.3% in Klebsiella pneumoniae. Drug-resistance rate of ESBL-producing strains to antibiotics was obviously higher than that of non ESBL-producing strains. Length of hospital stay longer than 20 days, and use of the third-generation cephalosporin longer than 5 days, quinolone antibiotics longer than 7 days, and topical antibiotics longer than 5 days were the risk factors of nosocomial infection caused by ESBL-producing strains, comparing with non ESBL-producing strains, the difference was statistically significant (with chi2 value respectively 5.491, 4.441, 15.186, 4.938, P values all below 0.05). CONCLUSIONS: Enterobacteriaceae strains in burn unit of our hospital are highly drug resistant, with high lactamase-producing rates, calling for intense monitor to control the risk factors that predispose the infection of ESBL-producing strains in order to lower the infection rate.


Subject(s)
Drug Resistance, Bacterial , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , Adolescent , Adult , Burn Units , Child , Enterobacteriaceae Infections/epidemiology , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Risk Factors , Young Adult , beta-Lactam Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...